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Approximate equations of the flow of gas in the transonic veloeity range possess an im-~
portant class of selfmodeling solutions. Many of the transonic flow properties such as, for
example, the character of flow at some distance from a body, the flow in Laval nozzles,
ete., were analysed with such solutions as the main teol{1 to 3].

An analysis is made below of cases in which the self-modeling solutions are represented
by algebraic functions. By resorting to parametric representation of the unknown magnitudes,
it is possible to indicate in all cases a form of solution convenient for gas dynamical com-
putations. Certain exact solations of the Tricomi equation have been obtained in this
manner, solutions which may be used in the analysis of new properties of transonic flows
such as flow in a Laval nozzle with linked snpersonic zones, flow in a nozzle with breaks
in its wall, flow in the neighborhood of the intersection point of the sonic line with the
sonic stream boundary, etc.

1. We shall consider a plane irrotational flow of a perfect compressible fluid in which
the velocities are nearly sonic throughout. Such a flow is approximated in the hodograph
plane by the system of equations of the form {4]

dg oy 69 I _
B S o =0, W__n»gé«_.o (1.1)

Here i is the stream function, @ is the velocity potential, 7 is a velocity function
which becomes zero at the critical velocity, and # is the angle of inclination of the velocity
vector.

System (1.1) is equivalent to the single Tricomi equation of the stream function
Let us consider the self-modeling solutions of system (1.1) of the form I3}

y=pirLE), @=pF"g(E), o= )0+, E=7np> 1.3

Putting ¢ from the first equation of (1.3) into Equation (1.2), we obtain the following
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hypergeometric equation which defines the function f

B — B - [2 5 — &l 4 Yk Mok + Ya)f =0 (1.4

The parameters of this equation are:
a=—k, b=1k+"e c =124 (1.5)

It is convenient to present the solution of the hypergeometric equation in terms of the
Riemann P-function which indicates the position of singular points of this equation, and
the indices of singularities of this solution at such points

0 o0 1
f:PiO — Yk ] E ]} (1.6
Yo Yok3Ys Y )

In the neighborhood of singulat points function f can be found by means of series.
Thus, in the neighborhood of the singular point £= 1, two linearly independent solutions
of Equation {1.4) can be presented in the form

fo=F(=k, Yo+ e Yo 1 —08)
fa=V1—8 F(y—sk s+ ok o 1 —F)

The general solution of the hypergeometric equation contains two constant

= Cify + Cofs

Since 1 — £ == 02 | p72, it follows from (1.3) and (1.7) that the stream function i
which corresponds to solution f;, will be even in §, while that pertaining to solation f,, by
virtue of the factor §/p will be odd in 8. It is easy to see that solution f, defines flows
which are symmetric abont the x~axis in the physical plane. The flow in a Laval nozzle,
and flows at some distance from a body helong to the latter category.

Ln

In order to find function g we substitute ( and @ from (1.3) into Equations (1.1), and
obtain two ordinary differential equations of first order with respect to f and g, from which
we find

e=— g A=Y@ 1.9

Substitating for f its expression from (1.6), and using the formnla for differentiating a
hypergeometric function, we obtain for g the expression

1] oo i
6 1 1
=2 pJ{0  —k—=Ys O g (1.9)
s 3k +1 Y, gk Y,

2. We shall find for which values of &k from (1.3), algebraic solutions of Equation {1.4)
exist. We shall make use of the results obtained by Schwarz who had solved this problem
for hypergeometric equations of the general type [6]. Firstly we shall find those values of
k for which particular algebraic integrals of Equation {1.4) exist, when the second of the
two linearly independent solutions may not be an algebraic function. This arises if, and

only if one of the numbers —1/,k, 1/ .k -+ Yo Y,k 4 2/, and —Y/,k + 1/, is an integer.

This condition determines the following values
=p, hk=—1s+p (p=%0,1,2,...) (2.1

Corresponding solutions in the form of polynomials can be found in Guderley’s hook

(3].
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We shall now detemine those values of & for which the general integral of the
hypergeometric equation (1.4) is algebraic. Such cases occur if, and only if the exponent
differences

=1—¢ bB=a—b V=c—ag—5b (2.9)

approximated to their integral parts, conform to the known Schwarz table [6]. For the
equation (1.5} considered here we obtain the following five possibilities

A=1s n=1 V=1 for k=Ys+p (2.3)
A=1)3 n= l/m v=1y for k=Ys+p, k=—1+4p (2.4)
7» =Yoo R=1Yy V=1 for k=lndp, k==—5, | p (2.5)

=5 w=1s, V=1 for k=Yutp k=—Vn+p (26
7\. =5, w=15 v=1, for k=Tt p, k=—1g=p 2.7
As was proved by Frankl[2], the value & = % from (2.3), leads to self-modeling solu-
tions defining the flow in a Laval nozzle with a curved transition line. Falkovich had
noted [4] that in this case the solation is in algebraic form and found the relevant general
integral. Frankl [5] gave later the whole family (2.3) and the form of integrals describing
flows symmetric about the x-axis in the physical plane. With k¥ = — 5/3 from the same
family we obtain a solution for the fundamental singularity of a flow at some distance
from a body [1}. When % = 4/3, we have a particular integral which defines the
flow around a corner. We may note, incidentally, that the relevant numerical solution
derived by Vaglio-Laurin {7], was obtained in an analytical form by us in [8], where we
also gave particular integrals which exist for the cases of k = 1/6 in {2.4), k = 1/12 in
(2.5), and k = 1/30 in (2.6). Lifschitz and Ryzhov {9] have derived the same particular
integrals for k = 1/6 and & = 1/12 in a different manner, and had indicated the families
(2.4) and (2.5), however, their work dealt with particular algebraic integrals.

3, We shall use the Schwarz method [10] for the actual computation of the hypergeo=
metric function appearing in (1.6). We reduce equation (1.4) to the normal form by sub-
stituting into it

R{E) = EH (1 — BYBF (D) (3.1

For the determination of 2 we obtain Equation

3 23— (6 4 1)

Let f, and f, be two linearly independent particular integrals of equation (1.4), not
necessarily congruent with solutions (1.7). To these correspond two integrals h, and 4,
of Equation (3.2). We introduce into our analysis the Schwarz function defined as the
ratio of two particular integrals

s=1fy:fy = byt hy (3.3)

We shall now derive the equation which is satisfied by function s. As each of the
integrals f; and f, contain two arbitrary constants, function s, which is determined with
an accuracy of the order of the multiplication constant, contains three constants. The
equation for s will, therefore, be of the third order. Denoting differentiation with respect
to & by primes, we can write

By - Tl =0, /AN | (3.4)

Replacing 4, in the {irst of above equations with sA;, and taking into account the
second equation of (3.4), we obtain
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U .

. T (3.5)

Differentiating this equation with respect to £, and using the second equation of (3.4)
together with Equation (3.5) for the elimination of A, and its derivatives, we obtain for s
the expression

ss - %‘(%)2 =2l (3.6)

If a particular solution of Equation (3.6) is found, then by integrating (3.5}, we first
obtain the solution hy = {s')~"s of Equation (3.2), and then utilising (3.3), the second

solution of this equation s, = s (s’)“x, The general solution of (3.4) is then of the form

ho= (Y7 (Cy s+ Cy (3.7)

Taking into account relationships (3.1) we can write down the generalised integral
of the hypergeometric equation (1.4)

F= () g (W — B (€ + o 5.9

4. Having found the solution in the hodograph plane, we must transpose it back onto
the physical plane. Reverting to variables @ and i/, we obtain instead of (1.1) the follows
ing system

a0 on 0

W‘{—W:O’ ‘5,5‘_7] o9 (4.1)

We shall limit our considerations to the analysis of flows not much different from a
plane parallel flow along the x-axis of the physical plane. We can then substitute in (4.1)
% for ¢, y for ¥, — u for 77, and v for &, where u and v are the dimensionless components
of the sonic stream perturbation velocity along the axes of the orthogonal coordinate
system x, y. With this condition, system (4.1} becomes equivalent to the system of
approximate equations derived by Karman for transonic flows [11].

In the physical plane the self-modeling solutions are expressed by [12 and 13]
= y?(n—l)U (C), 7= yS(n—l) vV (C), g — xy-n (4.2)
Here n is related to & of (1.3) by

3k +1 s
n = —g (4.3)

Functions U and V satisfy the following system of differential equations [14]
u§T+ dg —2(—1)U =0, U —-—--——3(n—i)V~}—n§—-O (4.9)
We substitate for I/ and V variables as follows [15]

t= UL, T = V3 (4.5)
System (4.4) is now equivalent to

dt - 2(n—1)2 4+ 3tv — 3nv
“at 2 Pnt—3(n— 1)1’

(n? = t) di
22 —2nt—3(n—1)1

4t
7 (4.6)

These equations have the following singular points at finite distances from the origin
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At=0,1t=0), ICE=n%1=2%Yp®, Di=1,1=—%) @7

Point 4 corresponds to the x-axis of the physical plane, while the singular point C
represents the limit characteristic. Infinity in the ¢ 7-plane, which we shall denote by point
B, corresponds to the y-axis.

Second equation of the system (4.6) shows that, when the integral curve ¢ = ¢ (7) of
the first equation of (4.6) intersects line ¢ = n? at a point other than the singular point C,
then d€ = 0. This indicates the appearance of a limit line in the corresponding flow.

The ¢, T-plane called the phase plane, is convenient for analysing flows in the
presence of shock waves. Denoting parameters related to the two sides of a shock wave
by indices I and 2, we write conditions at discontinuities as follows [16]

t.z == 2n2 — tl’ Tz == 11 + 2nt1 - 2n31 Cl = g? (4.8)
To determine the streamline we must integrate the approximate equation

dy°
dz

=0  for y=const (4.9

We integrate the second equation of (4.1) over the area bounded by line { = const,
and lines y =0, x = — = and y = y,. Using Green’s formula, we obtain

(&(J;i dy vdx) =0 (4.10)

Al>ng y = y, the first term of (4.10) is equal to zero, and the second one, to y,. The
integral can be easily computed along line { = const, if for u and v we substitute their
expressions from (4.3)

o 1
¥ =g ¥t Y (T) ( =%Uz+ nCV) (411

The analysis carried out in section 2 established all possible cases in which the nop~
linear system (4.4) can be solved in terms of algebraic functions. Corresponding values of
n can be easily found by resorting to the transformation formula (4.8), and to results
obtained in {2.1) and (2.3) to (2.7).

5. We shall now find the general integral for one single value of k¥ from each of the
infinite families (2.4) to (2.7). Other hypergeometric functions of the same family can be
found by consecutive differentiation of the function thus obtained. Family (2.3} is assumed
known [5], and will not be considered.

We take &k = 1/6 from family (2.4). For this value of & there exists a solution of the
Schwarz equation [6] which is

:___[HI (s)]s Hy(s)=5842 V352 —1

Fi(s) Fi(s)=st—2 V321 (5.1)

Polynomials H, and F, are such that the following identity holds
HP — F# = 2V3 [T, 9P, Ty (s) = s (s*+ 1) (5.2)
Using Expression (5.1) for £ and the identity (5.2), we find
— 3 70 (5.3)
1—8=—12 V3 73

Differentiation of (5.1) yields
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d - .
75 =— 24 V3T HeF ™ (5.4)

We shall now find function f by using Formula (3.8)
f=(Cis+ CHF (5.5)

Equations (5.1) and (5.5) together define parametrically in terms of s the hypergeo-
metric function f= f (£) which is the solution of Equation (1.4) for k = 1/6. We shall now

derive the expression of g =g (f) using Formula (1.8). Differentiating (5.5) with respect
to s, we obtain

%’;- = — My ()] F1s, Mi(s)=Cas*— V30182 + V3Cas +C1 (5.6)

Using the relationship df / d§ = (df / ds) (ds / df) and Equations (5.6), (5.4), (5.3) and
(5.1), and sabstituting into (1.8) for &, 1 — £ and df/d{ their expressions in terms of s, we
obtain

-3 Y
= — 37 M,F™* (5.7

In this case it is possible to derive the explicit expression for f= f{£), and conse-

quently for Function g = g (£). In fact, Equation (5,1) can be solved with respect to
Function s in the radical form [6]

3=—“V?i( 6V1—-851/8_6"1'/1—-3'1 E'/s )‘/’
61/1—32‘/:-{-6-11/ 1—g 1%

a V341 Y3—1 2mi 3
AR i B

Substituting into (5.5) the expression of s from (5.8), we obtain the general integral of

Equation (1.4). We shall find the explicit expressions for the particular solutions f, and f,
given by

(5.8)

1 1 1 T i
fl:F(—i_Z’z;_f;i ) Vsl/2V5V1_egla+6-1"/1_a-1gls (5.9)

— _ /5 3 3 3‘/-6
h=VI=Er (g pigit- ) = V VeVimeh—s1Vizedr

In this work, however, preference is given to the parametric presentation of all unknown
functions, as this permits a complete solution of the problem, in a form convenient for gas-
dynamic computations in all of the cases (2.4) to (2.7).

We shall derive the solution of system (4.4) for k = 1/6. The variable { defined by
Expression (4.2) is found by using (1.3), (5.5) and (5.7)

(p_Gi+V§Es—]/§s2+Es3 <

c
= —C—: =const, G =const) (5.11)

= (EF 7
Taking into account substitation (4.5) we can rewrite Equations (4.2) as follows
P2 P \3
z:($> u, 1::(6 J v (5.12)

If we substitute the previously found expressions ofg and i/ into the right-hand sides

of these equalities, we obtain the general solution of the first of Equations (1.6) in a para-
metric form
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(st —2 V3t — 1) (s + Ep s(s34+1)(s + EP

- — = ~ L 5.13
14 V3Es— V32 + Estp’ * 36(1—}—V3/5s— V352—}—E33)3( )

t=-3 V3
V(

Functions U and V are determined from Formula (4.5) by using the expression for £
given in (5.11)

st—2 V32— 1
(E+sp ’

Equations {5.14) together with (5.11) determine the parametric solutions U = U (),
and V =V {{) of system (4.4).

In their analysis of the problem of an asymptotic type of plane parallel flow in the
neighborhood of the center of a Laval nozzle, Lifschitz and Ryzhov [14] had considered a
nozzle corresponding to the value n = 3. It is possible to write down this solution in its
final form. In a hodograph plane this is given by the function f, which was defined in {5.10).
We shall derive the corresponding solution in the physical plane. A flow which is symmetric
about the x-axis is defined in the hodograph plane by the following expansion of Equation
(4.6) in the neighborhood of the singular point 4 (4.7)

2(n 1) 2 (1 — n)Y(12n2 — 251 - 12)

T=———— 2 -3 B ... (5.15)

s (s4 4 1)

V:BGGSW

U=—3 V36 (5.14)

In the case of n = 3, this expansion is obtained frem (5.13), on the assumption that
E=0

3Y3(s—2 V3st—1)s2
- (1— V3s2p

(24 1) ot
(1 — V3sp

L= , v =36 (5.16)

The corresponding curve is shown on fig. 1. Point 4 in the ¢ 7-plane, and the x-axis
in the physical plane, correspond to the value of
parameter s =0. By assigning to parameter s in-
creasing real values we move in the ¢7=plane along
curve ] in the direction of ¢ > 0. When s (2-—372)'2 ,
the singular point C is reached. A further increase
of s to s =3~% yields curve CB, which stretches
to infinity, and then reappears from the direction of
7 <0 (point B,). At s = 3" the curve intersects
line ¢t =9 at the point L which indicates a limit
line. When s -+ o, the integral curve ¢ = ¢ (T) be-
comes infinite at the point B,, with its asymptotic
behavior defined by 7 = 4¢. It can be easily shown
that in the case of an arbitrary index of self-
modeling, if the integral curve behaves asymptotic-
ally in the ¢ 7=plane as

FIG. 1 T~2(n-—1)t as [ — oo (5.17)

then the corresponding analytical flow in the physical plane will be symmetric about the
y-axis, It appears that when n =3, a flow symmetric about the x-axis is also symmetric
about the y-axis. Therefore, an analytic continuationbeyondthe y-axis results in the
above curve in the ¢7-plane being retraced in the reverse order, namely 5;LB,B,C14.
From a physical point of view the corresponding flow is of little interest, becanse of the
presence of a triple coverage of the physical plane which cannot be eliminated by the
introdaction of discontinaities.
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Equations (5.16) show that it is possible to plot a real curve ¢ =t (7) by assigning
to parameter s not only real, but also purely imaginary values. We introduce the notation

& = is, and substitute this into Formulas (5.16}

SV3(sT+2 Viasii—1) = 36 (1 - s19) it
N (A + Vs2p ’ =+ Vs

The behavior of this curve is shown on fig. 1. With s, = 0 we have point 4. With
increasing s the curve runs from this point in the direction of ¢t <0, and then intersects
the line ¢ = 0, which indicates that sonic velocity is reached when s, = 'I/Z—-— V3.
From here, we follow curve 2, and reach point C, when s, = V2 4- V'3, With further
increase of s, we plot curve CB,. When s, 500, then 7 ~ 4¢. This indicates a flow symmetric
about the y~axis. With an analytic continuation beyond the y-axis, we move along the plotted
curve in the opposite direction, namely B,C24.

Let us construct the corresponding flow. We specify £ =0, s =is, and G = iG, in
Formulas {5.11) and (5.14), and obtain

35,2 st 2 V3s2—1 4.4
f=—G ——5—, U=3ViG® fl——ug—}i‘— V = — 366Gy 2 J: (5.18)
These formulas define functions U = U ({) and V = ¥ (£) which characterize the
magnitude of velocity components 1 and v along the straight line y = const in the left-hand
half-plane £ < 0. In the right-hand hali-plane we have to use expressions (5,18) and as-

sume G, = — G, . These functions are shown on fig. 2, where the branch indexed 2 should

16 7 /
v o
A 7 B
// N 2 / ><></
/ w | s G ri/”" ) \é

1
!
vy g

2

0——2&
FIG, 2

be taken in the right-hand half-plane. The plotting of streamlines in accordance with
formula (4.11) shows that we have found a flow in a Laval nozzle, possessing two planes
of symmetry, x and y. At the entry the flow is subsonic, then sonic velocity is reached, the
stream is accelerated,then it stagnates in the critical section, then accelerates again,
and finally smoothly changes to subsonic. This is the limiting flow in a Laval nozzle with
local supersonic zones linked together at the x~axis of the nozzle. Fig. 3 shows the wall
contour and lines u = const, with C"; being the limiting characteristic upstream of the
nozzle center, and Ct downstream of it. It is important to note that this flow is analytical
throughout, except at the coordinate origin, where there is a singularity which indicates
the convergence point of supersonic zones. We find that the distribution of the longitudinal
component of the velocity u along the axis of the nozzle is u = — const x*/# from which
we can see that for x = 0 the second derivative @?u/dz? becomes infinite, We may note
that similar flows considered in the work of Tomotiki and Tamada [17], and in that of
Ryzhov [18] are not analytical, neither along the C75 characteristic upstream of the nozzle
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center, nor along the characteristic Ct downstream of it, and can only be obtained with
nozzles of special form, while the flow shown on fig. 3 will obtain apparently in any nozzle

in the neighborhood of its center.
g
¢’
74
/
z

FIG. 3 FIG. 4

g

Besides the flow shown on fig. 3 a wide range of Laval nozzle flows with weak dis-
continuities along the C7, and C} characteristics and shock waves, can be analysed for
n =3, as was done by Ryzhov for n = 2 in [18]. We shall consider one of such flows. Let
A2CB..B,.CIA be the representative curve in the t7-plane. This means that at the entry, up
to the C§ characteristic, the flow coincides with that analysed above, while along the
C?% characteristic there exists a weak discontinuity, beyond which the flow is supersonic
right up to the axis, and is symmetric about the x~axis. Along the C} characteristic, a
discontinnity of third derivatives of comporents of perturbation velocity u and v exists.
Function U and V of this new flow are shown in fig. 2, where the branch indexed 1 is to be
taken in the zone of {> {Ct Form of nozzle walls and lines u = const are shown on

fig. 4. This flow was analysed by Lifschitz and Ryzhov [14].

With the aid of the derived solutiens of Tricomi’s problem we shall analyse the change
of various modes of gas flow through a Laval nozzle symmetric about the 0 ~axls, which
coincides with the critical section.

We shall consider the flow in a nozzle symmetric about the y-axis which coincides
with the critical section. At subsonic velocities the field of flow in this nozzle is also
symmetric about the y~axis. During the acceleration of gas, local supersonic zones which
increase with increasing rate of output appear on the two sides of the critical section.
Away from these zones, the flow remains symmetric about the y-axis, while in the zones
themselves there may appear, generally speaking, shock waves which will upset the
symmetry. In the limiting case, when the supersonic zones link together, as is shown on
fig. 3, symmetry of the flow may still be preserved, but in the next moment, as shown on
fig. 4, we have a transition to a Laval nozzle flow pattern with an abrupt distorbance of
symmetry. After that, linked supersonic zones should gradually disappear, and the flow
should revert to one, which is analytical at the nozzle center, and which corresponds to the
value n = 2. It can be assumed that the flow shown on fig. 4 is unstable. A strict proof of
the above would require the solution of equations of a two-dimensional, non.stationary
supersonic flow.

As another important flow defined by a selismodeling solution for n =3, we shall note
the one which occurs in the neighborhood of the intersection point of a sonic stream bound-
ary with the sonic line. Fig, 5 shows a stream with the critical velocity at its boundary,
and a body placed in it. The flow upstream of the body and up to it is subsonic, then it is
accelerated and becomes supersonic downstream of the body, with Oa being the sonic line,
Ob the line of horizontal inclination of velocity, Oc the second sonic line, Od the limit
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characteristic CY, Oe the line of horizontal inclination of velocity, and Of the limit
characteristic C™,.

We shall consider the neighborhood of point O in the hodograph plane (fig. 6), where
lines corresponding to those of fig. 5 are demoted by the same letters. A characteristic
{eatare of the flow considered here is, that the streamline Oa is at the same time the sonic
line on which the condition 7 = 0 is fulfilled. In the hodograph plane this condition is
formulated thus: (¥ = 0 on line Oa. In the neighborhood of 7} = 0 the hypergeometric equation
(1.4) has a particular solution defined by the series

n ko4 k1 4 40
p=gm -zt Tt 5 (519

Solution f, defines the stream function yr which fulfils the boundary condition tf =0
for 77 = 0. We now continue f; (5.19) analytically into the neighbothood of the limit char-
acteristic Od, as shown in fig. 6, and stipulate the regularity of the stream function ¢/
there. The analytical continuation of f, into the neighborhood of line 0b is given by
Formula [19]

n k 1 k 1 1 6
fs=Q1WF(“§+3—,7+7;'§:pa)+
n 0 /k E 5 3 6
+ ng(% o p F <’2“ Fl—3 457 ’{a?) (5.20)
01— T (*s) T ()a) _ T (#s) T (=)
VT ChE+DT (= k£ 5" Q= Rk T OREF 7D

We shall then make use of relationships required for the analytical continuation into
the neighborhood of O¢

F(’%+%*%+%?%Z%)“DIF(“%+%,%+%;%;%2—:)+(5.21)
Y TR .

S e SR
_04(3/23)2/3 2y (~}+%~§%-‘§- ;‘3)

(5.22)
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D — P LT (— 1) Do = P T ()
YTk T (— 14k Pk ) Dk 17
FGLT (=) C L) T (1)

Da=T11= Tk ) TRk ) DeranET 0T (= 72k +s)

The substitution of functions (5.21) and (5.22) into the right-hand side of Equation
(5.20) yields for the neighborhood of line Oc

(5.23)

Nk (_if_ 1'1'5 {1 4 4 o Sk 1 E o2 4

R P\ 23T Ty 55 )+ B (Tt g —-?=§;'g“p—z)
Ey = QD) — Q,Dy, Ey, = QD, — Q,D,

It remains now to carry out the continnation into the neighborhood of the limit char-
acteristic Od. This is done by resorting to Formulas [19]

E 1 k& 1 4 &
P~z tgigtgigige)=

k1
A “2"”—3“/1 ko k 5.9 ¢
k 1
SR L AL N B 7 92
TR g Flg+g. g5 k+gigp
( p> ( n> (5.24)
k 1 k2 4
F('Q‘*‘}‘—U‘,‘—E Rk p‘z)—'
LA 5
LAY N T 7 9p2
st(__?%) Fly+g,5+gib+gigs)+
k
Ay 2 k k 1 , i()_pz_
+Ii’4(’—§§é’) F(—j,w7+—3,~IL+6,4ng> (5.25)
T (4) U (k 4 s) e VOB (= k= 1e)
Bo= Tk R T ORET D ¢S T — o) =Tk £ 0
L Clo) I (=& —T/) Ry = P (%) T (k + )
B=T T — hk+) CE T RE ST Ok )

We substitute functions derived in (5.24) and (5.25) into Equation (5.23), and write

down the expression of the stream function i (1.3) corresponding to solution f,
E

4 7 k o1 o %?
v=m(—gw) Fl—g gt gk Fia) T
k1 (5.26)
4 5 . ke 1 k 1 7 992
¥ (=5 ) (T T g b )

Here
Ny= — Q1D Ry + QaDsRy -+ Q1D2Re— Q1DsRy
No == — Q1D1Rs 4 QuD3lts - Q1D:Rs — QaDaRy
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By substituting for 0, D and R their expressions from {5.20) to {5.25), and using the
known ['-function formula, I (2) I" (z + 1) = 77 /sin 77x, the coetficients N, and N, can be
expressed by

4 () I (k4 Ye)
Nl = —3‘ i (1/2 ]E) P(l/zk + 1/2) cos nk

T (Yg) T (— b — /) (5.27)
T (= s b +5a) T(— 1, b - 1f5) 008 7 (k4 a)

2
N2=§‘

If in Expression (5.26) the second term coefficient N, is equal to zero, then the stream
function i is regular in the neighborhood of the limit characteristic defined by the equality
p =0. We obtain the following values of &

1
k=L — (p=40,1,2,...) (5.28)
In particular & = 1/6 which corresponds according to Formula (4.3) to n = 3.

It is easy to prove that the solution f; given in (5.19) is determined in the neighborhood
~f point A in the ¢t 7= plane by the expansion
) n L Bn—2)@rn—3) | (Gn—=2p(2n*—5n4-2)
VI3 T T 4 (3n —3) #+ 5648 (n — 1) B (529

For n = 3 this expansion yields that particular solution which is defined by Formulas
(5.13) when p .. ’Vz + V3. Eliminating s, we obtain the following relationship

(t—t— 92 = (1 4+ Y1) (¢ — 9)2 (5.30)

This solution belongs to the class of solutions indicated in [8]. A similar solution
was also obtained by Barantsev [20]. The relevant curve is shown on fig. 1 by a dotted
line. Velocities are found with the aid of

U= GL+ 1, G4 Vo= 1y G0 + Y6 - 1/ GP {5.31)

6. We shall consider now the value & = 1/12 from the family (2.5). Following solutions
of equation (3.6) exists for this value of & [6].

[H: (s)PP

E= w0 RE=1E S R =s— 6.

In the following computations we shall use the identity

Hyp — 2239F,8 = [1, (5)]2 (T (s) = 1 — 335t — 338 4 s12) (6.2)
Using (6.1) and (6.2) we find Expression
1—~E= —2233F,F ¢ {6.3)

Differentiating (6.1} we obtain the derivative

dE

— = — 3 [ RT (6.4)

s

Substituting for &, 1 — &, and d§/ds their expressions from (6.1), {6.3) and (6.4) res-
pectively, we obtain for f
= s b G)F (6.5)

The corresponding solution for g is derived from Formula (1.8)

g=— 51,971 37V 17‘2"55‘” M, (s) My(s) = €, — 5C1s — 5C,s - .8 (6.6)
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Equations (6.5) and (6.6) together with (6.1) yield the parametric functions f= f(£)
and g = g (£) which define the solution in the hodograph plane.

We may note that the solution considered in this section could also have been ob-
tained from the solution derived in the preceding section by a quadratic transformation of
the hypergeometric function. In fact, the particular solutions of (1.7) for k = 1,12 are of
the form

fr= F (=Yg Sy Y3 1 — ), = Vr:E,—F (Magr Yoy %oy 1 — &) (6.7)

Using Goursat’s table of quadratic transformations {21], we obtain

AU (L) T (%) 1 5 ¢ : 1 5 2 1 S
: ? ( §1—E)=1"[“i§>1—2;j3“;—2-(1+Vi——i)]-%-

F ) U ()" \™ 26°22° 2
1 5 2 1 -
+F[—ﬁ,ﬁ;§';—2-(i-]/i-—i)]
¥ (6.8)
AN (—=Y) T (¥s) oo /11 17 3
U (—12) T (/24) Vi_gp(ﬂ’ﬁ;f;i""a)=
1 5 2 1 S 1 5 2 1 P—
= [-TZ’TZ"_‘J;T“"V‘"‘i)}“F{"ﬁiﬁigi‘z‘(iﬂL Vi-—&;]

The right-hand sides of Equations (6.8) contain function F (—1/,,, %/4,, ¥4, w), but
using

0 o i 0 oo 1
P 1 0 —~Yu O w b= whep 0 —1l O fwli
Yo 3he J Vs Yy 1,

we return to function f as defined by (1.6) for £ = 1/s, but with a changed argument, This,
together with the conclusion reached in the preceding section as to the possibility of
deriving the explicit form of function f= f (&) for k = 1/6 shows, that such a form can also
be found for the case £ = 1/12.

We shall now obtain the solution of system (4.) for £ = 1,/12. We find variable { by
using the results obtained in (6.4) and (6.6)

E —D5s —5Est 4 68

=6~ rrep (6.9)
We write the general solution of Equation (4.7) in a parametric form
(4 + 145 + %) (E 4 s)? 2 (4 — 3354 — 3358 1 §12) (E - s
b= 5 —SEAF SR © T=3 9 (E—5:—5ES 1 & (6.10)
and find the solution of system (4.4) from Equation (6.9) together with Equations
U = (562 %f, V=2 sepis 33:;’;3;?: s 6.1

We shall now find the value of E in Equation (6.10) which for n = 5 would yield a
solution coinciding with expansion (5.15), and which defines a flow symmetric about the
x-axis in the physical plane. It is easily seen that we must select for £ a value equal in
magnitude to one of the roots of the equation T, (s} =0, but of the opposite sign. Function
T, (s) defined by (6.2) appears in the numerator of the expression of 7 in (6.10). Let us
find the real roots of equation T, (s) = 0
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5.,=1+ V2 s30=—14 V2 (16.2)

Let E= — (14 V2). We substitute this value of E into Equations (6.9) to (6.11),
and plot the corresponding curve on the ¢ 7-plane. The behavior of this curve is shown
schematically on fig. 7.

With s =1 + V2 we have point 4, and then, with the decreasing parameter, move
in the direction of £ > 0 along the integral curve defined by the first of equations (4.6).
We reach point C at s = 1. When s passes through the root of the polynomial M, (s),
s = 0.840, the curve becomes infinite along B,, and then reappears on the side of 7<0
along B;. With s = 0.655 the curve intersects line t = 25 (point L,), then line 7= 0, and
at s = 0, we reach point C for the second time. With s approaching s = s, =1 — V3,
the curve stretches to infinity along B, with its asymptotic behavior defined by ¢ ., 8¢.
A further decrease of the parameter results in the same curve being traversed in the
opposite direction, namely B;CL,B,B,CA. This curve can obviously be also extended into
the area of ¢t <0. However, such an extension would necessitate the consideration not
only of the real values of parameter s, but also those of the complex values for which the
functions £, U, V, t and T have real values. In the preceding section, both real and purely
imaginary values were assigned to parameter s, when flows symmetric about the x-axis
with n = 3 were considered. The question arises, which path is to be followed on the
complex plane of parameter s in order to obtain all of the real values of the functions
under consideration. In order to answer this question we shall turn to the following pro-
perty of the Schwarz function {6]: the Schwarz function s = s (f), defined by Equation
(3.3), yields a conformal representation of the lower half-plane of variable £ on the inside
of a triangle delineated by circular arcs, with its inner angles equal to A7, 77 and v 77,
where A, p and v are defined by (2.2). Because only real values of £ are considered here,
and since in the case of selfzmodeling solutions all the gas dynamic parameters are
expressed by £, it is clearly unnecessary to go beyond the area of this triangle in the
complex s-plane. In order to extend curve ¢ =t (7) beyond the point 4 it will be necessary
to move, in this case, on the parameter plane from the value of s =1+ }2 along the
circumference of a circle with its center at the point 5 = 1, and of radius )2,

The use of complex parameters is not convenient for computations. It is preferable to
resort to a linear transformation which would transform the above circle into a real axis, by
using the property of the Schwarz function, that its linear transformation also yields a
solution of the Schwarz equation [10]. Denoting the new function again by s, we obtain
along with solution (6.1) of Equation (3.6) for k = 1/12, the following solution

64 V2[5 ()P ( Hy(s)=s"—14TV2st—s > (6.13)
- [Fa(s)] Fa(s) =845 V2s3—1
Instead of the identity (6.2) we shall have

Fyt —64 VI HE=[T5(s)]
_ _ (6.14)
To(s)=—s12 422 V22 +22 V241
We find f and g from Formulas (3.8) and (1.8) by repeating the above procedure
f=(Cis+ COFS g = 25T My (o)

My (s) = — V2Cys® + 50,53 — 5C,5 — V2 ¢y (6.15)
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Variable (is determined with the aid of relatiouships (6.15)

— V24 5k — 55— V28 G
] .16
(Es T 1p s b= (6.16)

£=6
The integral curves in the ¢ 7- plane are easily found

522 Vs - Tst— 2 Y 257) (Es - 1)
(— V255 -+ 5% — bst — V2ER

B3 (e s12 b 22 Y 260 1 22 V3s% 4 1) (Fs 1P 617
T (— V2 5Es*— 55 — Y 2Ep
We also write down solution of the system (4.4)
2 V2418 —2 Vi 1 s 22 V3022 V281

U == (5G)“ (IL'S + 1)3 + b o= — j (-)(;)3 (ES + 1)12 (6-18)
b ﬁ;/ / These equations have to be considered together

/ with Equation (6.16). In order to separate from the
/ 5: general solution (6.17) that particular solution which

defines the flow symmetric about the x-axis, it is
necessary to find the real roots of Equation
7 T, {s) = 0. There are two such roots

si=V3-- V3, n=V2—-V3
!éﬁé ¢

ﬂ,/\g

FIG. 7 FIG. 8

We assume in Formulas (6.16) to (6.18) the constant £ to be equal to s = V2 — Vs.
The corresponding curve is shown on fig. 7. For s =V§+V§, Equations (6.17) yield the
point 4 on the t7-plane. With the decrease of the parameter we move along the curve in the
direction of £t <0, When s = VE' the curve intersects the line £ = 0, which in the physical
plane corresponds to transition through sonic velocity. The singular point C is reached
when s = 0,518, and when the decreasing parameter passes through the values s = 0.286,
the integral curve streiches into infinity along By, and then reappears along By. Line
t = 25 is intersected when s = 0.0673. For s =0 we have £ =0 and 7= ~ 458.8, and for
s~ s;= V2 — VY3 the curve stretches to infinity along Bs with an asymptotic behavior
T ~ 8t. Decreasing the parameter still further results in the same carve being followed in
the opposite direction, namely 8sL.B:8,CA.

The solution derived in this section may be used for the analysis of certain special
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types of flow in Laval nozzles. We shall limit our analysis to flows in which subsonic
and velocities exist simultaneously.

We may consider a flow pattern with weak discountinuities along the characteristics
upstream and downstream of the nozzle center. One of such flows is represented in the
t7-plane as follows: from point 4 of the curve shown on fig. 7 we move in the direction
of t >0 (the subsonic part of a Laval nozzle); we intersect line ¢ = 0 (the sonic line) and
reach point C (characteristic line C3); then, instead of moving along the analytical con-
tinuation CB,, we follow the curve CB, (along the characteristic C7g, fourth derivatives
of the sonic stream perturbation velocity components will be discontinuous) ; we move into
infinity along the branch B, (the y - axis in the real plane); then by an analytical centinua-
tion beyond the y-axis, we return along the curve B,C to the point € (characteristic line
C%); from C we move to the point 4 along the curve reaching that point from the direction
of ¢t > 0 (the supersonic part of a Laval nozzle}. A peculiarity of this flow is the symmetry
of the stream about the y-axis in the area between the two characteristics.

We shall consider another possible application of the derived solution for the case
of n = 5. Let us assume the presence of a small break in the wall of a Laval nozzle in its
inlet part and in its supersonic zone, which widens the stream {point Z on fig. 8)

A rarefied flow or the Prandil —Meyer

v wave, spreads from this point. If the break is
/[," assumed to be small, the rarefied wave must be
§ narrow. In this case the Prandtl — Meyer flow
T son’ can be approximated by a rarefaction dis-
' continuity. The suggestion to consider such
25107 discontinuities was first made by Frankl’ in

connection with the problem of a local super~

#

g

§10* /
/_é%ﬁ_._\ﬁ/ sonic zone [22]. It is interesting to note

g P that two such discontinuities meeting at the
center of a Laval nozzle, at its axis, need

-4-17% -25107  npot produce a reflection, which shows that
J10° 210t -0t 0 * the flow along the €% characteristic is an

analytic one. This means that it is possible
FIG. 9 to obtain in practice a sufficiently smooth

supersonic stream in nonanalytic nozzles.

The traversing of the physical plane of the flow under consideration from the subsonic
to the supersonic zone is represented in the ¢ 7-plane by curve 47,Z,B,B,C4, in the dir-
ection indicated by arrows. Points Z; and Z, have been selected so, as to satisfy the first
two of the discontinuity conditions (4.8). The third condition {;={, can be satisfied if the
multiplication constant G is retained in Expressions (6.16) and (6.18), and made equal to
70.51G in Expressions (6.9) and (6.11), which define the flow downstream of the disconti-
nuity. The position of discontinuity is determined by {/G = 13.34. The behavior of the
dimensionless velocity components U and V is shown on fig. 9.

7. We shall derive the solution for the case of & = 1/30 belonging to the family (2.6).
We use the relevant solution obtained by Schwarz [6]
[Ha ()PP Hy(s) =1 -+ 22855 - 404510 — 228515 - 520
&zm"” Fq(s)=15—11s8 — s11

Polynomials H, (s) and F, (s) are such that the following equality is fulfilled

(7.1
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HE — 8-3F0 = [Ty (s)P (7.2)
(Ty (s) = 1 — 5225 — 10005 1% — 1000552 -} 522 525 - §80)
The solution of Equation (1.4) for & = 1/30 is found from (7.1) in conjunction with
Equation

f=(CLs4 Cy) Fn (1.3)

The corresponding solution is in the form of
g~ F My (s) (My(s) = C3 — 11C;5 — 66Cys® + 66Cs® — 110,610 + ¢511)  (7.4)

The parametric form of solution of system (4.4} in the case of n = 11 considered here
is
§ = G(E — 11s — 66Es® -- 665 — 11Es10 - 1) (E - 5)~1
U= (11G)* (1 + 22855 - 494510 — 228515 + 520) (E 1 5)~20

(7.5)
V = 23 (11G)® (1 — 52255 — 10005510 — 100055 - 52252 |- 5%0) (£ |- 5)=80

The corresponding solution in the t7-plane is found from Formulas (4.5). In order to
separate from the general solution (7.5) the particular solution which defines the flow sym-
metric about the x-axis in the physical plane, we have to find the real roots of equation
T, (s) = 0. There are four of such roots

a=g (V=14 V10=2V8,  s=gl¥V5—1—) 102 V3] e
7.6
=g = VE—t+Vi0r2 V3,  si=gl=Viot—Viot2 V3l

The corresponding solution in the ¢7=plane will coincide with the solution indicated
in (5.15), if in Formulas (7.5} we put E = — s, . This solution gives part of the curve shown
schematically on fig. 10.

When we decrease the parameter s from s = s,,
r B to s = s, the curve in the t7-plane runs from the
point 4 in the direction of t > 0 along the path
ACB;B,L,CBB,L,B, . A further decrease of this
parameter results in this path being followed in
the opposite direction.

3 We shall now obtain an analytical continu-
M ation of the plotted curve beyond the point 4 in

the direction of ¢t < 0.

Dl

In this case it is possible to do so without
resorting to a new form of solutions. We assume
E = — s, in Formulas (7.5). We decrease para-
meter § from s = s, to s = s, and plot in the
t 7= plane the corresponding curve which runs

from the point A in the direction of ¢ <0 (fig. 10)
/ —\K along the path ACBB,L,CB;. A further decrease
& & of this parameter results in this path being tra~

versed in the opposite direction,

FIG. 10 It will be easily seen that the obtained solu-
tion viewed as a whole has no physical meaning,
because of the presence of three limit lines L,, L, and L,. Lifschitz and Ryshov have
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suggested in [14] the introduction into the analysis of a shock wave Z, Z,, and use of the
following part of the plotted curve: from point 4 in the direction of ¢ <0 to point C, then
along CB¢B,, a jump from point Z, to point Z,, with a return to point 4 from the direction
of t > 0. The authors of [14] consider that this solution defines a certain asymptotic flow
in the neighborhood a Laval nozzle center. The flow velocity along the axis of such a
nozzle varies according to the law u = const x20/11  Along the characteristic C7 upstream
of the nozzle center the flow is analytic, except at the center itself, where d?u / d2? = oo,
A shock wave is propagated through the stream from the nozzle center in the downstream
direction, beyond which the stream is again accelerated. We may point out that the continu~
ation of the given flow through the shock wave in such a way, as to maintain the stream
symmetry about the x-axis beyond the shock wave, can be obtained in two ways, namely:
by a jump from Z, to Z,, or from Z, to Z, onto that branch of curve CA which approaches
point A from the direction of £ <0.

In the second case the stream behind the shock wave continues to be decelerated, and
becomes again subsonic.

The solution of system (4.4) in the case of £ = 1/30 can also be expressed in another
parametric form, different from (7.5), which may be more convenient for computations of
certain problems. We shall consider solution (7.1) of the Schwarz problem. We carry out the
linear transformation of function s.

R a=%[_2_21/5+V10—2V5+V50—10V5] .7

T sa—1"
and obtain a new solution of the Schwarz equation in the form {the prime is omitted)

S 210
= ¥ [Fs ()P

Hs(s)=—3 V'5s® — 190518 - 57 }/ 5516 — 2280514 - 1482 J/ 5s12 1 (7.8)
+ 4940510 1482 V 5s® — 2280s° + 57 Y/ 558 — 190s2 — 3 V5
fs(s)= ¥ 5s12— 22510 _ 33 V58 4 4458 — 33 V52 — 222 1 V5
Instead of identity (7.2) we have the identity
1o+ 2 P = — o (Lo (o)

Ts(s) = — 225 V 552 — 2900827 — 15921 |/ 55 4 104400s™ — 90045 I/ 5™ — 200100s1° —

— 570285 Y 5s17 4 570285 V551 4 20010051 4 90045 ¥ 55° — 10440057 4 (7.9)
415921 V555 4 2900s% 4- 225 V' 5s
The solution of Equation (1.4) for 5 = 1/30 is then given by Equation (7.8) and
f=(Cys + Co)Fs 2 (7.10)

The solution of system (4.4) is then expressed by

4
(=G(E+s) M Ms(s), U=—MGP (E+s)™H;, V=gzMGP(E+3s)>Ts
(7.11)
Ms(s)=—3 V5EsH— 11510 L 5559 — 33 }/ 558 - 66 V 5Es7 4 6658 — 66Es5 —

66 VB5s*--33 VBES® — 552 — 11 £s+3 V5

It follows from the results obtained above that the solutions of system (4.4) for



1022 S.V. Fal’kovich and 1.A. Chernov

k=1/6,1/12, and 1/30, when expressed in a parametric form, are single-valued functions
of parameter s, in other words, s is the homogenizing variable. The generalised solution
form is, in these cases, as follows

C=GMy(s)(E o)™, O =G (s) (£ 5 s) 2™, Vo= RGBTy (s) (£ + s)30'¢

where E, G, k,, and k, are constants, and Mi’ H;, and T, the corresponding polynomials.

8. We shall derive the solution for & = 7,30 in the family (2.7). Schwarz had shown
in [6] that in this case the solution of Equation (3.6) can be expressed algebraically by
the solution of that equation for & = 1,/30. Klein [23] had found the form of this depend-
ence. We denote the Schwarz function for the case of k= 7/30 by s,, and the Schwarz
function for & = 1/30, as before, by s. The following formula is then valid

= 67 T (09 1) ®.1)

In order to find the solution of f{£) we shall use Formula (3.8) where we substitute
s, for s. We shall again use the parametric representation, but in terms of s, and not of
s, . Weshall find d8/ds, = d&/ds ds/ds), where df/ds is defined by (7.1), and ds/as, by
(8.1

dE,
S 5 A3 38 LT F 6
ds Jed 3 1I4 Tg]‘g

Function f(£) is defined by the formula
== (C187 + TCys® — TCy2 4 Cy) F 1
together with Equation (7.1).
Having found the solution, we determine in the usual manner the solution of system
(4.4) in the hodograph plane forn = 17/7
T c §17 — 17 Es?5 4 119512 - 187 Es10 -1 18757 — 119Es% - 17s2 -~ E
t=1 (87 + TEsS — sz + E)'

2 "
U = GHs(s)(s7 + TES — T8 + E)™, V=3 GTy(s)(s7+ TEs>— 752 -+ E)y™

The same solution for the case of k¥ == 7/30 can be obtained in another form, if
Equation (7.8) is used instead of (7.1).
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