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Approximate equations of the flow of gas in the traneonic velocity range possess an im- 
portant class of selknodeling solutions. Marty of the transonic flow properties such as, for 
example, the character of flow at some distauce from a body, the flow in Lava1 nozzles, 
etc., were analysed with such solutions as the main tool[l to 31. 

An analysis is made below of cases in which the self-modeling solutions are represented 
by algebraic functions. By resorting to parametric representation of the unknown magnitudes, 
it is poesible to indicate in all cases a form of solution convenient for gas dynamical com- 
putations. Certain exact solutions of the Tricomi equation have been obtained in this 
manner, solutions which may be need iu the analysis of new properties of transonic flows 
such as flow in a Lava1 nozzle with linked supersonic zones, flow in a nozzle with breaks 
in its wall, flow in the neighborhood of the intersection point of the sonic line with the 
sonic stream boundary, etc. 

1. We shall consider a plane irrotational flow of a perfect compressible flnid iu which 
the velocities are nearly sonic throughout. Such a flow is approximated in the hodograph 
plane by the system of equations of the form [4] 

(1.1) 

Here $ is the stream function, cp is the velocity potential, 11 is a velocity function 
which becomes zero at the critical velocity, and 0 is the angle of inclination of the velocity 
vector. 

System (1.1) is equivalent to the single Tricomi equation of the stream function 

(1.2) 

Let us consider the self-modeling solutions of system (1.1) of the form 133 

Putting I) from the first equation of (1.3) into Equation (1.21, we obtain the following 

1004 
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hypergeomet~c equation which defines the function f 

E (1 - Qf” + w3 - ‘f&If + %k W2k + ‘lalf = 0 
The parameters of this eqnation are: 

a= --Yak, b = II& + l/e, c = “Is 

(1.4) 

(1.5) 

It is convenient to present the solution of the hypergeometric equation in terms of the 
Riemann P-function which indicates the position of singnlar points of this equation, and 
the indices of singularities of this solution at such points 

i” O” * 1 
0 --Yak 0 4 j 
l/a “la k + “I3 ‘I2 

(1.6) 

In the neighborhood of singular points function f can be found by means of series. 
Thus, in the neighborhood of the singular point [= 1, two linearly independent eohio~ 

of Equation (1.4) can be presented in the form 

fl = F C-‘l$, Y& + ‘la; ‘lo 1 - 43 

fa = vm P (‘la - Vzk, “Is + ‘I&; ‘1s; 1 - U 
f1.7) 

The general solution of the hypergeometric equation contains two constant 

f = Clfl + Gfa* 
Since 1 - F, = 02 / p-2, it follows from (1.3) and (1.7) that the stream function $ 

which corresponds to solution fi will be even in 8, while that pertaining to solution A, by 
virtue of the factor d/p will be odd in 8. It is easy to see that solution f, defines flows 
which are symmetric about the n-axis in the physical plane. The flow in a Lava1 nozzle, 
and flows at some distance from a body belong to the latter category. 

In order to find function g we substitute ti and Cp from (1.3) into Eqaations (1.11, and 
obtain two ordinary differential equations of first order with respect to f and g, from which 
we find 

g= - 3&J 5”” (1 - Q’V (E) (1.8) 

Substituting for fits expression from (l.S), and using the formula for differ~~ating a 
hypegeometric function, we obtain for g the expression 

(0 03 1 ‘I 

I5 go-_----- 
3k + 1 

- %k-% o 

‘12 

(1.9) 

2. We shall find for which values of k from (1.31, algebraic solutions of Eqnation (1.4) 
exist. We shall make use of the results obtained by Schwarz who had solved this problem 
for hypergeometric equations of the general type [6]. Firstly we shall find those valuee of 
k for which particular algebraic integrals of Equation (1.4) exist, when the second of the 
two linearly independent solutions may not be an aIgebraic function. This arises if, and 

only if one of the numbms -Y2kc ‘12k + 1/6, 1/2k + 2/3, and -‘/,k + ‘/, is an integer. 

This condition determines the following values 

k = p, k = - ‘is + P (P=*o, 1, 2,. . .) (2.1) 

131. 
Corresponding solutions in the form of polynomials can be found in Guderley’s book 
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We shall now determine those values of k for which the general integral of the 

hypergeometric equation (1.4) is algebraic. Such cases occur if, and only if the exponent 

differences 

h=1-c, ~=a-& Y=c--_a--_b 
(2.2) 

approx~ated to their integral parts, conform to the known Schwarz table [6f. For the 

equation (1.5) considered here we obtain the following five possibilities 

h =. ‘In, p = t/z, v = “12 for k =I/3 + P (2.3) 

X = l/s, I_L - t/s, v = ‘62 for ‘k =lJe + p, k = - l/x $ p (2.4) 

h = 1/S, E” = t14, v = ‘I2 for k =I,$:! ‘- p, k ~---5/,~ j- p (2.5) 

h = r/s, j& = I,!&, y = 1/Z for k ==l/zo + p, lc x - 11,& + p (2.6) 

h = ‘,$, 1-1 = 2jr,, “v = ‘,$ for k =7,& + p, k =: - ‘:/3O -, I> (2.7) 

As was proved by Frank1 [2f, the value k = y from (2.31, leads to sel~odeling solu- 

tions defining the flow in a Lava1 nozzle with a curved transition line. Falkovich had 

noted [4] that in this case the solution is in algebraic form and found the relevant general 

integral. Frank1 [s] gave later the whole family (2.3) and the form of integrals,describing 

flows symmetric about the x-axis in the physical plane. With k = - S/J from the same 

family we obtain a solution for the fundamental singularity of a flow at some distance 

from a body [l]. When k = 4/3, we have a particular integral which defines the 

flow around a corner. We may note, incidentally, that the relevant numerical soIution 

derived by Yaglio-Laurin [7}, was obtained in an analytical form by as in [8], where we 

also gave particular integrals which exist for the cases of k = l/6 in (2.41, k = ~[!a in 

(2.51, and k = i/30 in (2.6). Lifschitz and Ryzhov [9] h ave derived the same particular 

integrals for k = l/6 and k = I/IZ in a different manner, and had indicated the families 

(2.4) and (2.51, however, their work dealt with particular algebraic integrals, 

3. We shall use the Schwarz method [IO] for the actual computation of the hypergeo- 

metric function appearing in (1.6). We reduce equation (1.4) to the normal form by sub- 

stituting into it 

12 (E) = VJ (1 -- Q1’4f G) (3.1) 

For the determination of h we obtain Equation 

-$+Ih=O (3.2) 

Let fr and ft be two linearly independent particular integrals of equation (1.4). not 

necessarily congruent with solutions (1.7). To these correspond two integrals h, and h, 

of Equation (3.2). We introduce into our analysis the Schwarz function defined as the 

ratio of two particular integrals 

s = fI : f2 = h, : ii, (3.3) 

We shall now derive the equation which is satisfied by function s. As each of the 

integrals jr and fi contain two arbitrary constants, function s, which is determined with 

an accuracy of the order of the multiplication constant, contains three constants. The 

equation for s will, therefore, be of the third order. Denoting differentiation with respect 

to t by primes, we can write 

II,” -, iit1 =-- 0, 1&.1f1 -;m lit, - 0 (3.4) 

Replacing h, in the first of above equations with sh,. and taking into account the 

second equation of (3.41, we obtain 
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S” 

7 
=_2$ 

t 
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(3.9 

Differentiating this equation with respect to c, andusing the second equation of (3.4) 

together with Equation (3.5) for the elimination of h, and its derivatives, we obtain for s 

the expression 

S 
II, 
--- 
S_ 

3 SW a=21 
z-z- C ! (3.61 

If a particular solution of Equation (3.6) is found, then by integrating (3.51, we first 

obtain the solution la% = (s’)- *A of Equation (3.2), and then utilising (3.31, the second 

solution of this equation h, = s (s')-g. The general solution of (3.4) is then of the form 

h 5 (s’)-‘lx (C, s + C,) (3.71 

Taking into account relationships (3.1) we can write down the generalised integral 

of the hypergeometric equation (1.4) 

(3.8) 

4. Having found the solution in the hodograph plane, we must transpose it back onto 

the physical plane. Reverting to variables C$ and $, we obtain instead of (1.1) the follow- 

ing system 

(4.1) 

We shall limit our considerations to the analysis of flows not much different from a 

plane parallel flow along the z-axis of the physical plane. We cau then substitute in (4.11 

rforr$,yfor$,- u for ‘I, and v for 6, where n and w are the dimensionless components 

of the sonic stream perturbation velocity along the axes of the orthogonal coordinate 

system x, y. With this condition, system (4.1) becomes equivalent to the system of 

approximate eqnations derived by Karman for transonic flows [ll]. 

In the physical plane the self-modeling solutions are expressed by 112 and 133 

u = ys(n-1) u (5), ?,I = y3wt v(g), r; =: z3-n (4.2) 

Here n is related to k of (1.31 by 

3k+ f 
n=--7g- (4.3) 

Functions [I and V satisfy the following system of differential equations [I41 

& $+ d5 z--2@-4)U=0, u -f$-3(n- 1)V + .+o (4.4) 

We substitute for U and V variables as follows [15] 

t = UC-=, 

System (4.4) is now equivalent to 

z = vsa 

dz 2(n-I)P+3tz-3~ df (ns - t) dt 

7 - 2t~-2nt-3(n-i)z ’ T= 2t2-2nt-3(n-~)z 

(4.5) 

(4.6) 

These equations have the following singular points at finite distances from the origin 
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A (t = 0, z = O), IC (t = r&z, z = 2/gzp, D (t = 1, z = --a/a) (4.7) 

Point A corresponds to the z-axis of the physical plane, while the singular point C 
represents the limit characteristic. Infinity in the t %plane, which we shall denote by point 
B, corresponds to the y-axis. 

Second equation of the system (4.6) shows that, when the integral curve t = t (7) of 
the first equation of (4.6) intersects line t = nr at a point other than the singular point C, 
then d[= 0. This indicates the appearance of a limit line in the corresponding flow. 

The r, -plane called the phase plane, is convenient for analysing flows in the 
presence of shock waves. Denoting parameters related to the two sides of a shock wave 
by indices 1 and 2, we write conditions at discontinnities as followa [16] 

t, = 2n2 - t,, z, = “1 + znt, - 2113, 51 = 5s (4.8) 

To determine the streamline we must integrate the approximate equation 

df 
x=” for y = const (4.9) 

Is integrate the second equation of (4.1) over the area bounded by line c= const, 
andlinesy=O,x=-eo and y = ye. Using Green’s formula; we obtain 

$( -$dy+ vds) = 0 (4.10) 

Al urg y = ye the first term of (4.10) is equal to zero, and the second one, to y,, . The 
integral can be easily computed along line jr= const, if for u and v we substitute their 
expressions from (4.3) 

(4.11) 

The analysis carried out in section 2 established all possible csses in which the non- 
linear system (4.4) can be solved in terms of algebraic functions. Corresponding valnes of 
n can be easily found by resorting to the transformation formula (4.3), and to results 
obtained in (2.1) and (2.3) to (2.7). 

5. We shall now find the general integral for one single value of k from each of the 
infinite families (2.4) to (2.7). Other hypergeometric functions of the same family can be 
found by consecutive differentiation of the function thus obtained. Family (2.3) is assumed 
known [S], and will not be considered. 

We take k = l/6 from family (2.4). For this value of k there exists a solution of the 
Scliwarz equation [6] which is 

F=[$$je* 
Hr (s) = c + 2 J&s - 1 

Fr(s)=S4-2 J&2- 1 
(5.1) 

Polynomials H1 and F, are such that the following identity hdds 

H$ - Frs = fZyX[T, (s)P, z+l (s) = s (s4 + 1) (5.2) 

Using Expression (5.1) for eand the identity (5.2), we find 

I-_E=-12 y’sT& 
Differentiation of (5.1) yields 
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dE --- 
ds - 24 1/3T1H12~1-a 

We shall now find function f by using Formula (3.8) 

j = (C,s + C,)F,+ 
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(S.4) 

(5.5) 

Eqnations (5.1) and (5.5) together define parametrically in terms of s the hypergeo- 

metric function f = f (0 w tc is the solution of Eqnation (1.4) for k = 116. We shall now h’ h 

derive the expression of g = g ([) using Formula (1.8). Differentiating (5.5) with respect 

to s, we obtain 

df Y* ,,=--[M~(s)lFi > Ml (s) = c$$ - 1/39 sa + I/a + Cl (5.6) 

Using the relationship df / dE = (df / ds) (ds / df) and Equations (5.6), (5.41, (5.3) and 

(5.1) , and sabstituting into (1.8) for c, 1 - [and df/d[their expressions in terms of s, we 

obtain 

g = _ 3% M F -% 
11 

In this case it is possible to derive the explicit expression for f = f (5‘1, and cons- 

quently for Function g = g (cl. In fact, Equation (5.1) can be solved with respect to 

Function s in the radical form [6] 

s=- Jf/-i 
8 1/l _&' _ 8-l J/-- 

8 Jf/1+eS'/d-1 1/ 1-g-1p ') 

=I* 

ni 1/$+1 V/3--1 
6=exp1T= 2v2: +21/2i, 

2ni 
e=expT = -- 

6.8) 

Substituting into (5.5) the expression of s from (5.8), we obtain the general integral of 

Equation (1.4). We shall find the explicit expressions for the particular solutions fi and fi 
given by 

fl=F(-&,+;9; 1 - 5) = &v 3 1/- +8-l fm (5.9) 

In this work, however, preference is given to the parametric presentation of all unknown 
functions, as this permits a complete solution of the problem, in a form convenient for gas- 

dynamic computations in al1 of the cases (2.4) to (2.7). 

We shall derive the solution of system (4.4) for k = 116. The variable cdefined by 

Expression (4.2) is fonnd by using (1.3). (5.5) and (5.7) 

1+ Jf/3Es - ~%-j- EsS 

(E + 8)” ( 
E = 2 = const, G = const) (5.11) 

Taking into account substitution (4.5) we can rewrite Equations (4.2) as follows 

(5.12) 

If we substitute the previously found expressions ofq and I/J into the right-hand sides 

of those equalities, we obtain the general solution of the first of Equations (1.6) in a para- 

metric form 
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(5.13) 

Functions U and V are determined from Formula (4.5) by using the expression for 5 

given in (5.11) 

U =--3 1/$G2 
St- 2 Jf@- 1 s($+i) 

fE+Q“ ’ 
V = 36 Gs (E + r)* (5.14) 

Equations (5.14) together with (5.11) determine the parametric solutions U = U (<), 

and V = V (0 of system (4.4). 

In their analysis of the problem of an asymptotic type of plane parallel flow in the 

neighborhood of the center of a Lava1 nozzle, Lifschitz and Ryzhov [14] had considered a 

nozzle corresponding to the value n = 3. It is possible to write down this solution in its 

final form, In a hodograph plane this is given by the function fi which was defined in (5.lOf. 
We shall derive the corresponding solution in the physical plane. A flow which is symmetric 

about the x-axis is defined in the hodograph plane by the following expansion of Equation 

(4.6) in the neighborhood of the singular point A (4.7) 

2 (n - 1) 
T= i?a +y 

2 (1 - n) (12/&Z - 25th -{- 12) f3 + 

l&a 
(5.15) 

n . . . 

In the case of n = 3, this expansion is obtained from (5.13), on the assumption that 

E=O 

t= 3 Jf/5($--2 J&z-1)s” (s4 + 1) s4 
--- 

(I- 1/Q) ’ T = 36 (1 _ r/t&‘)3 
(5.16) 

The corresponding curve is shown on fig. I. Point A in the t Fplane, and the x-axis 

FIG. 1 

in the physical plane, correspond to the value of 

parameter s = 0. By assigning to parameter s in- 

creasing real values we move in the .t~-plane along 

curve I in the direction of t > 0. When s (2-_3’/‘)“z , 

the singular point C is reached. A further increase 
of s to s = 3-s yields curve CR, which stretches 

to infinity, and then reappears from the direction of 

7 < 0 (point B,). At s = 3% the curve intersects 

line t = 9 at the point L which indicates a limit 

line. When s -+ 00, the integral curve t = t (7) be- 

comes infinite at the point B,, with its asymptotic 

behavior defined by T= 4t. It can be easily shown 

that in the case of an arbitrary index of sclf- 

modeling, if the integral curve behaves asymptotic- 

ally in the t %plane as 

z-2(n--l)t as t+ 00 (5.17) 

then the corresponding analytical flow in the physica plane will be symmetric about the 

y-axis. It appears that when n = 3, a fiow symmetric about the x-axis is also symmetric 
about the y-axis. Therefore, an analytic continuation beyond the y-axis results in the 

above curve in the t% plane being retraced in the reverse order, namely B,LB,B,Gld. 
From a physical point of view the corresponding flow is of little interest, because of the 

presence of a triple coverage of the physical plane which cannot be eliminated by the 

introduction of discontinilities. 



Self modeling soiutions 0 j fransonic gas jlow 1011 

Equations (5.16) show that it is possible to plot a real curve t = t (7) by assigning 

to parameter s not only real, but also purely imaginary values. We introduce the notation 

s = is, and substitute this into Formulas (5.16) 

The behavior of this curve is shown on fig. 1. With s1 = 0 we have point A. With 

increasing s the curve runs from this point in the direction of t < 0, and then intersects 

the line t = 0, which indicates that sonic velocity is reached when sr = 2 

From here, we follow curve 2, and reach point C, when sr = ‘I/ $ Ij3’WX.r 2 .T i ur e 

increase of si we plot curve CR,. When s1 + m , then T .X 48. This indicates a flow symmetric 

about the y-axis. With an analytic continuation beyond the y-axis, we move along the plotted 

curve in the opposite direction, namely B,CZA. 

Let us construct the corresponding flow. We specify E = 0, s = is, and G = iG, in 

Formulas (5.11) and (5.141, and obtain 

c=-Gt 
1 + Jf&ss,z 
s-- 

s1 ' 

v --__:16c13~ (5.18) 

These formulas define functions U = U (0 and V = V (0 which characterize the 
magnitude of velocity components u and u along the straight line y = const in the left-hand 
half-plane << 0. In the ~ght-hand half-plane we have to use expressions (5.18) and as- 
sume Gr = - G1. These functions are shown on fig. 2, where the branch indexed 2 should 

FIG, 2 

be taken in the right-hand half-plane. The plotting of streamlines in accordance with 

formula (4.11) shows that we have found a flow in a Lava1 nozzle, possessing two planes 
of symmetry, x and y. At the entry the flow is subsonic, then sonic velocity is reached, the 
stream is acceleratedrthen it stagnates in the critical section, then accelerates again, 
and finally smoothly changes to subsonic. This is the limiting flow in a Lava1 nozzle with 
local supersonic zones linked together at the z-axis of the nozzle. Fig. 3 shows the wall 
contour and lines u = const, with CT being the limiting characteristic upstream of the 
nozzle center, and C”t; downstream of it. It is important to note that this flow is analytical 
throughout, except at the coordinate origin, where there is a singularity which indicates 
the convergence point of supersonic zones. We find that the distribution of the longitudinal 
component of the velocity LI along the axis of the nozzle is it = - const x4j3 from which 
we can see that for x = 0 the second derivative dzuidx2 becomes infinite. We may note 
that similar flows considered in the work of Tomotiki and Tamada [17], and in that of 
Ryzhov [18] are not analytical, neither along the C, characteristic upstream of the nozzle 
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center, nor along the characteristic c d ownstream of it, and can only be obtained with 
nozzles of special form, while the fIow shown on fig. 3 will obtain apparently in any nozzle 

in the neighborhood of its center. 

FIG. 3 

Besides the flow shown on fig. 3 a wide range of Laval nozzle flows with weak dis- 

continuities along the CP, and C$ characteristics and shock waves, can be analysed for 

n = 3, aa was done by Ryzhov for n = 2 in [18]. We shall consider one of such flows. Let 

ASCB,B,CXA be the representative curve in the t%plane. This means that at the entry, up 

to the C-f; characteristic, the flow coincides with that analysed above, while along the 

C$ characteristic there exists a weak discontinuity, beyond which the flow is supersonic 

right up to the axis, and is symmetric about the x-axis. Along the C$ characteristic, a 

discontinuity of third derivatives of components of perturbation velocity u and v exists. 

Function U and V of this new flow are shown in fig. 2, where the branch indexed 1 is to be 

taken in the zone of [> cc, For m of nozzle walls and lines u = const arc shown on 

fig. 4. This flow was analysed by Lifschitz and Ryzhov [I4]. 

With the aid of the derived solutions of Tricomi’s problem we shaI1 analyse the chaugc 

of various modes of gas fIow through E Lava1 nozzle symmetric about the Oy-axis, which 

coincides with the critical section. 

Wo shall consider the flow in a nozzle symmetric about the y-axis which coincides 

with the critical section. At eabsonic velocities the field of flow in this nozzle is also 

symmetric about the y-axis. During the acceleration of gas, local supersonic zones which 

increase with increasing rate of output appear on the two sides of the critical section. 

Away from these zones, the flow remains symmetric aboat the y-axis, while in the zonea 

themselves there may appear, generally speaking, shock waves which will upset the 

symmetry. In the limiting case, when the supersonic zones link together, as is shown on 

fig. 3, symmetry of the flow may still be preserved, but in the next moment, as shown on 

fig. 4, we have a transition to a Lava1 nozzle flow pattern with an abmpt disturbance of 

symmetry. After that, linked supersonic zones should gradually disappear, and the flow 

should revert to one, which is analytical at the nozzle center, and which corresponds to the 

value n = 2. It can be assumed that the flow shown on fig. 4 is unstable. A strict proof of 

the above would require the solution of equations of a two-dimensional, nomtationary 

supersonic flow. 

As another important flow defined by a self-modeling solution for n = 3, we shall note 

the one which occurs in the neighborhood of the intersection point of a sonic stream bound- 

ary with the sonic line. Fig. 5 h s ows a stream with the critical velocity at its boundary, 

and a body placed in it. The flow upstream of the body andup to it is subsonic, then it is 

accelerated and becomes supersonic downstream of the body, with 00 being the sonic line, 

Ob the line of horizontal inclination of velocity, Oc the second sonic line, Od the limit 
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FIG. 5 FIG. 6 

characteristic C-t;, Oc the line of horizontal inclination of velocity, and O/the limit 

characteristic C”, . 

We shall consider the neighborhood of point 0 in the hodograph plane (fig. 6), where 

lines corresponding to those of fig. 5 are denoted by the same letters. A characteristic 

feature of the flow considered here is, that the streamline 00 is at the same time the sonic 

line on which the condition 7 = 0 is fulfilled. In the hodograph plane this condition is 

formulated thus: $ = 0 on line 00. In the neighborhood of r~ = 0 the hypergeomet~c equation 

(1.4) has a particular solution defined by the series 

-- 
f8 - (8,2;)” F ( -f+LL+;;;;$$) (5.191 

Solution f, defines the stream function I;t which fnlfils the boundary condition I) = 0 

for ?I = 0. We now continue f, (5.19) analytically into the neighborhood of the limit char- 

acteristic Od, as shown in fig. 6, and stipulate the regularity of the stream fnnction tf, 

there. The analytical continuation of fs into the neighborhood of line Ob is given by 

Formula [ 191 

r P/3) r (W 
Q1 = I’ (I,& k + 1) r (- ‘I2 k + Sfsf ’ 

r (w r (- 114 
Qz = r (- % k + ‘Id r f% k + ‘M 

(5.20) 

We shall then make use of relationships required for the analytical continuation into 

the neighborhood of Oc 
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The substitution of functions (5.21) and (5.22) into the right-hand side of Equation 
(5.20) yields for the neighborhood of iine Oc 

(5.23) 

fl El 
fs = (312 p)"/" 

It remains now to carry out the ~ontinn~tion into the neighborhood of the &nit char- 
acteristic Od. This is done by resorting to Formulas [I91 

We substitute functions derived in (5.24) and (5.25) into Equation (5.23), and write 
down the expression of the stream function $ (1.3) corresponding to solution fS 

fC 
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Ry substituting for Q, D and R their expressions from (5.20) to (5.25), and using the 

known r-function formula, r(z) I” (z + 1) = v/sin 71%. the coefficients Nr and Nz can be 

expressed by 

4 1‘(‘/3) I‘(k i- l/L?) 

N1 = b /cl’ (t/r Ic) r (l/q k + 1/2) ccc3 ‘lc 

2 r P/a) I? (- k - “/o) 
Nz = 3 f (- l/3 k +5/4 I’ (- I/;? h_ + l/3) ME n (k -t- l/3) 

(5.27) 

If in Expression (5.26) the second term coefficient N, is equal to zero, then the stream 

function $ is regular in the neighborhood of the limit characteristic defined by the equality 

p = 0. We obtain the following values of k 

P 4 ~~---_- 
2 3 (P = *o, 1, 2, * . -) (5.28) 

In particular k = t/6 which corresponds according to Formula (4.3) to n = 3. 

It is easy to prove that the solution f3 given in (5.19) is detenined in the neighborhood 

nf point A in the t%plane by the expansion 

,,: L; J& t + +;Y$(=; 3) t” + (::‘L - “)*’ Pa2 - “!_ZP! t3 + . . . 

5h3 (a - 1) (5.29) 

For n = 3 this expansion yields that particular solution which is defied by Formulas 

(5.13) when 1; = v2 + i/s; El iminating s, we obtain the following relationship 

(z - t - 9)2 = (1 + 1/3t) (t - 9)2 (5.30) 

This solution belongs to the class of solutions indicated in [8]. A similar solution 

was also obtained by Barantsev [20]. Th e relevant curve is shown on fig. 1 by a dotted 

line. Velocities are found with the aid of 

U = Cc + lirz G2, 1’ = I/a Cc” + Xj&Z~ -t_ ‘irZG3 (5.31) 

6. We shall consider now the value k = t/12 from the family (2.5). Follower solutions 

of equation (3.6) exists for this value of k [6]. 

In the following computations we shall use the identity 

Hsa - 2233FZ4 = [T, (s)]r (T, (s) = 1 - 33s4 - 33.P + $2) (6.2) 

Using (6.1) and (6.2) we find Expression 

f -- E = - 2-23-3 T,F,-’ 
(6.3) 

Differentiating (6.1) we obtain the derfvative 

/IF 
-) = - 3-a li’Z~T~l,‘,-” rln (6.4) 

Substituting for 5, 1 - & and d&ds their expressions from (6.1). (6.3) and (6.4) res- 

pectively, we obtain for f 

The corresponding solution 

fi = __ 5,. ,-‘5, 3-l!’ F,-?” 

f z= (C,s -i- C2)F2-“‘ 

for g is derived from Formula (1.8) 

it& (s) Ma (9) = c, - 5ClS - 5ces4 -f c,s5 

f6.5) 

(6.6) 
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Equations (6.5) and (6.6) together with (6.1) yield the parametric functions f= f (5) 

andg=g([) whiohdeffneth e solution in the hodograph plane. 

We may note that the solution considered in this section could also have been ob- 

tained from the solution derived in the preceding section by a quadratic transformation of 

the hypergeometric function. In fact, the particular soIutions of (1.7) for k = t/12 are of 
the form 

Using Goursat’s table of qnadratic transformations [21], we obtain 

2r (- '12) 1' p/3) 
ri_,,24~r~4,24~ ?-4F(&;:$;M)= 

(6.8) 

The right-hand sides of Equations (6.8) contain function F (--‘/rr, s/ts, a/a, w), but 

udng 

i” M 1 t 
- '/I2 0 

0 O” 3 w-_l 
U) } = w1/‘2P 0 - IfI () - 

w 

5/12 l/3 I ! 113 v4 v2 i 

we return to function fas defined by (1.6) for k = t/6, but with a changed argument. This, 

together with the concInsion reached in the preceding section as to the possibility of 

deriving the explicit form of function f= f(t) for k = 1/6 shows, that such a form can also 

be found for the case k = 1112. 

We shall now obtain the solution of system (4.) fork = I/IS. We find variable gby 

using the results obtained in (6.4) and (6.6) 

C=G 
E-55s-5Efi+s5 

W + ST 
(6.9) 

We write the general solution of Equation (4.7) in a parametric form 

t t 52 (1 -I- i4.e + $1 (E + s12 
(E-~s---~Es~+s~)~ ’ 

z = 2 53 (i - 33.~49 - 33~~ + ~9 (E + 8)s 
3 

(6 1oJ 
(E-5s-5Es4+s5)8 - 

and find the solution of system (4.4) from Equation (6.9) together with Equations 

1;14s4+sS 
u = GG)” (E$_ @3 , v=&)" * 

- s3.d - 33.93 + $2 

(E + +* 
(6.11) 

We shall now find the value of E in Equation (6.10) which for n = 5 would yieId a 

solution coinciding with expansion (5.15), and which defines a flow symmetric about the 

r-axis in the physical plane. It is easily seen that we must select for E a value equal in 

magnitude to one of the roots of the equation II’, (sf = 0, but of the opposite sign. Function 

Z’* (s) defined by (6.2) appears in the numerator of the expression of T in (6.10). Let us 

find the real roots of equation T, (a) = 0 
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S 1,s = 1 f 0, S3,4 
=--lfJf/Z (16.2) 

Let E = - (I$ I/a. W e substitute this value of E into Equations (6.9) to (6.11). 

and plot the corresponding curve on the t-plane. The behavior of this curve is shown 

schematically on fig. 7. 

With s = 1 + fy we have point A, and then, with the decreasing parameter, move 

in the direction of t > 0 along the integral curve defined by the first of equations (4.6). 

We reach point C at s = 1. When s passes through the root of the polynomial M, (s), 

s = 0.840, the curve becomes infinite along B1, and then reappears on the side of 7< 0 

along B,. With s = 0.655 the curve intersects line t = 25 (point L,), then line 7= 0, and 

at s = 0, we reach point C for the second time. With s approaching s = s2 = 1 - v/2, 

the curve stretches to infinity along B, with its asymptotic behavior defined by t ~ 8t. 

A further decrease of the parameter results in the same curve being traversed in the 

opposite direction, namely B,CL,B,B,CA. This curve can obviously be also extended into 

the area of t < 0. However, such an extension would necessitate the consideration not 

only of the real values of parameter s , but also those of the complex values for which the 

functions 6, U, I/, t and 7 have real values. In the preceding section, both real and purely 

imaginary values were assigned to parameter s, when flows symmetric about the x-axis 

with n = 3 were considered. The question arises, which path is to be followed on the 

complex plane of parameter s in order to obtain all of the real values of the functions 

under consideration. In order to answer this question we shall turn to the following pro- 

perty of the Schwarz function [6] : the Schwarz function s = s (t), defined by Equation 

(3.3), yields a conformal representation of the lower half-plane of variable ton the inside 

of a triangle delineated by circular arcs, with its inner angles equal to X~T, g 7~ and UT , 
where h, p and u are defined by (2.2). Because only real values of 5 are considered here, 

and since in the case of self-modeling solutions all the gas dynamic parameters are 

expressed by [, it is clearly unnecessary to go beyond the area of this triangle in the 

complex s-plane. In order to extend curve t = t (7) beyond the point A it will be necessary 

to move, in this case, on the parameter plane from the value of s = 1 + vz along the 

circumference of a circle with its center at the point s = 1, and of radius 1/x 

The use of complex parameters is not convenient for computations. It is preferable to 

resort to a linear transformation which would transform the above circle into a real axis, by 

using the property of the Schwarz function, that its linear transformation also yields a 

solution of the Schwarz equation [lo]. D enoting the new function again by s, we obtain 

along with solution (6.1) of Equation (3.6) for k = t/12, the following solution 

H3 (s) = s7 - ‘147 Jf/2,.+- s 

F3 (s) = ._4 + 5 1/5 s3 - 1 
(6.13) 

Instead of the identity (6.2) we shall have 

F34 - 64 J’5H33=[7’3(s)]2 

T,(~)=-~1~+22~%~+22 l/%3+1 

We find f and g from Formulas (3.8) and (1.8) by repeating the above procedure 

j = (C,s + c2)F3-*‘*, g = 2’/35-‘F3-5’” M3 (s) 

M3 (s) = - V/2cass + 5+3 - 5c,s2 - JfFc, 

(6.14) 

(6.15) 
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Variable [is determined with the aid of relationships (6.15) 

5 = G - If2 $5 + T,/<S” - 5s” - +fz B Cl 
_.-_ 

(/is .+ 1)” > Ir: = -Ly 

The integral curves in the t%plane are easily found 

(6.16) 

(6.17) 

FIG, 7 

These equations have to be considered together 

with Equation (6.16). In order to separate from the 

general solution (6.17) that particular solution which 

defines the fIow symmetric about the x-axis, it is 

necessary to find the real roots of Equation 

I’, (s) = 0. There are two such roots 

FIG. 8 

We assume in Formulas (6.16) to (6.18) the constant E to be equal to s = fi- .r/i-. 

The corresponding curve is shown on fig. 7. For a =&+\/s, Equations (6.I77) yield tha 

point A on the t7-plane. With the decrease of the parameter we move along the curve iu the 

direction of t < 0. When a = f2, th e curve intersects the line t = 0. which in the physical 

plane corresponds to transition through sonic velocity. The singular point C is reached 

when s = 0.518, and when the decreasing parameter passes through the values s = 0.286, 

the integral curve stretches into infinity along B,, and then reappears along Br. Line 

t = 25 is intersected when s = 0.0673. For s = 0 we have t = 0 and 7= -458.8, and for 

a --_) se 5-: 1;z_ r/‘ the curve stretches to infinity along Bb with an asymptotic behavior 

7~ 8t. Decreasing the parameter still further results in the same curve being followed in 

the opposite direction, namely &&&B&J~. 

The solution derived in this section may be used for the analysis of certain special 
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types of flow in Lava1 nozzles. We shall limit our analysis to flows in which subsonic 

and velocities exist simultaneously. 

We may consider a flow pattern with weak discoatinuities along the characteristics 

upstream and downstream of the nozzle center. One of such fIows is represented in the 

t%plane as follows: from point A of the curve shown on fig. 7 we move in the direction 

of t > 0 (the subsonic part of a Laval nozzle) ; we intersect line t = 0 (the sonic line) and 

reach point C (characteristic line C<) ; then, instead of moving along the analytical con- 

tinuation CB, , we follow the curve CB, (along the characteristic Cl,, fourth derivatives 

of the sonic stream perturbation velocity components will be discontinuous) ; we move into 

infinity along the branch B, (the y-axis in the real plane) ; then by an analytical continua- 

tion beyond the y-axis, we return along the cmrve B,C to the point C (characteristic line 

C$) ; from C we move to the point A along the curve reaching that point from the direction 

of t > 0 (the supersonic part of a Lava1 nozzle). A peculiarity of this flow is the symmetry 

of the stream about the y-axis in the area between the two characteristics. 

We shall consider another possible application of the derived solution for the case 

of n = 5. Let us assume the presence of a small break in the wall of a Lava1 nozzle in its 

inlet part and in its supersonic zone, which widens the stream (point Z on fig. 8) 

FIG. 9 

A rarefied flow or the Prandtl-Meyer 

wave, spreads from this point. If the break is 

assumed to be small, the rarefied wave must be 

narrow. In this case the Prandtl - Meyer flow 

can be approximated by a rarefaction dis- 

continuity. The suggestion to consider such 

discontinuities was first made by Frankl’ in 

connection with the problem of a local super- 

sonic zone [22]. It is interesting to note 

that two such discontinuities meeting at the 

center of a Laval nozzle, at its axis, need 

not produce a reflection, which shows that 

the flow along the C$ characteristic is an 

analytic one. This means that it is possible 

to obtain in practice a sufficiently smooth 

supersonic stream in nonanalytic nozzles. 

The traversing of the physical plane of the fIow under consideration from the subsonic 

to the supersonic zone is represented in thi t r-plane by curve A &Z,B,BICA, in the dir 

ection indicated by arrows. Points Z1 and 2, have been selected so, as to satisfy the first 

two of the discontinuity conditions (4.8). The third condition sI=cl can be satisfied if the 

multiplication constant G is retained in Expressions (6.16) and (6.18), and made equal to 

70.5IG in Expressions (6.9) and (6.11), which define the flow downstream of the disconti- 

nuity. The position of discontinuity is determined by c/C = 13.34. The behavior of the 

dimensionless velocity components U and V is shown on fig. 9. 

7. We shall derive the solution for the case of k = I/SO belonging to the family (2.6). 

We use the relevant solution obtained by Schwarz [6] 

[ff4(s)13 

c = 43.33 (Fp (s)]S ’ 
114(s)= 1 .+ 228s~ i; 4!%s'O - 22%‘5 + 520 

1”‘4(s)=s-i11s6-s 11 (7.1) 

Polynomials H, (s) and F, (s) are such that the following equality is fulfilled 
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fr43 - 48.39F4b = [T, (s)]z (7.2) 

(2“ (4 = 1 - 522.75 - 10005 s”’ - 10005P’ + 522 $5 + $0) 

The solution of Equation (1.4) for k = l/30 is found from (7.1) in conjunction with 

Eqnation 

f = (Cl S + C,) F*-‘/rt 
(7.3) 

The corresponding solution ia in the form of 

g - Fd-“l# M, (s) ((Ma (s) = c, - 11&s - SSCas” + 66C,s6 - i1c,s’o i_ ~1) (7.4) 

The parametric form of solution of system (4.4) in the case of n = 11 considered here 

is 

1;= G(E-tIls-- 66Es5 + 668 - liEsJo + P) (E + s)-l1 

U = (11G)2 (1 + 228~5 + 494P - 228P + ~20) (E + s)-20 

V = r/a (11G)* (I- 522~6 - 10005~1~ - 10005s20 + 522~25 + 830) (E + s)-30 

(7.5) 

The corresponding solution in the t-plane is found from Formulas (4.5). In order to 

separate from the general solution (7.5) the particnlar solution which defines the fIow sym- 

metric about the x-axis in the physical plane, we have to find the real roots of equation 

7’. (a) = 0. There are four of such roots 

The corresponding solution in the tpplane will coincide with the solution indicated 

in (5. lS), if in Formolas (7.5) we put E = - a1. This solution gives part of the curve shown 

schematically on fig. 10. 

FIG. 10 

When we decrease the parameter s from s = sr, 

to s = s1 the curve in the t%plane runa from the 

point A in the direction of t > 0 along the path 

ACB,B,LQ&R&,B, . A farther decrease of this 

parameter results in this path being followed in 

the opposite direction. 

We shall now obtain an analytical continu- 

ation of the plotted curve beyond the point A in 

the direction of t < 0. 

In this case it is possible to do so without 

resorting to a new form of solutions. We assume 

E = - aJ in Formulas (7.5). We decrease para- 

meter s from s = a, to s = s, and plot in the 

t % plane the corresponding curve which mns 

from the point A in the direction of t < 0 (fig. 10) 

along the path ACB~~,L3C~~ A further decrease 

of this parameter results in this path being tra- 

versed in the opposite direction. 

It will be easily seen that the obtained solu- 

tion viewed as a whole has no physical meaning, 

because of the presence of three limit lines L, , L1 and L, . Lifschitz and Ryshov have 
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suggested in [14] the introduction into the analysis of a shock wave Z, Z, , and use of the 

following part of the plotted curve: from point A in the direction of t < 0 to point C, then 

along CB,B, , a jump from point Z, to point Z, , with a return to point A from the direction 

of t > 0. The authors of [ 141 consider that this solution defines a certain asymptotic flow 

in the neighborhood a Lava1 nozzle center. The flow velocity along the axis of such a 

nozzle varies according to the law u = const x zo’11. Along the characteristic C: upstream 

of the nozzle center the flow is analytic, except at the center itself, where d2u / dz2 = 00. 

A shock wave is propagated through the stream from the nozzle center in the downstream 

direction, beyond which the stream is again accelerated. We may point out that the continue 

ation of the given flow through the shock wave in such a way, as to maintain the stream 

symmetry about the x-axis beyond the shock wave, can be obtained in two ways, namely: 

by a jump from Z, to Z, , or from Z, to 2, onto that branch of curve CA which approaches 

point A from the direction of t < 0. 

In the second case the stream behind the shock wave continues to be decelerated, and 

becomes again subsonic. 

The solution of system (4.4) in the case of k = 1130 can also be expressed in another 

parametric form, different from (7.5), which may be more convenient for computations of 

certain problems. We shall consider solution (7.1) of the Schwarz problem. We carry out the 

linear transformation of fnnction a. 

s’ + a 
SC-- 

s’a- I’ 
: [-2-2 I/s+ 1/10-2 1/5+1/50---o V51 a=- (7.7) 

and obtain a new solution of the Schwarz equation in the form (the prime is omitted) 

4= 
[ffs (s)la 

- 27/s IF6 (s)]5 

ff5 (s) = - 3 Jf/5szo - i90sls + 57 Jf5sle - 2280~1~ + 1482 Jf5sr2 + 

+ 494Os’o + 4482 J&8 - 228Os6 + 57 Jf/sfi - 19osx - 3 v/s 

f5 (s) = ~~s~~ - 22s’O - 33 JGSS + 44se - 33 Jf5.+ - 22s2 + Jf/s 

Instead of identity (7.2) we have the identity 

(7.8) 

H5a + ‘; F55 = - $, IT5 (41” 

T5 (s) = - 225 ~%a - 2900927 _ 15921 v/5$5 + WMOS~ - 90045 v/5sa1 - 200100~‘~ - 

570285 J&17 + 570285 1/5:n’ + 2OOlOOsi’ + 90045 1/%’ - 104400s’ + (7.9) 
- 

+ 15921 v/5@ + 29008 + 225 I& 

The solution of Equation (1.4) for k = l/30 is then given by Equation (7.8) and 

f = (C,s + C2)Fj-*,+2 (7.10) 

The solution of system (4.4) is then expressed bv 

G=G(E+s)-*‘MS(s), U =-(1iG)z (E+s)-*“H5, V=&(ilC)9(E+s)-a”TS 

(7.11) 

MS(s) = - 3 J’%sll- 1ls”J + 55Es9 - 33 I’-5~8 + 66 1/5Es7 + 66sa - 66E.+ - 

- 66 Jf.%~ f 33 Jf5Es3 - 55s” 7 11 Es + 3 Jf5 

It follows from the results obtained above that the solutions of system (4.4) for 
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k = I/C, l/12, and f/30, when expressed in a parametric form, are single-valued functions 

of parameter s, in other words, s is the homogenizing variable. The generalised solution 

form is, in these cases, as follows 

j = (;,lli (S) (B .P)-“, L’ = /~,G’lli (S) (I:’ _t S)-Z’L+2, V = Jc”G”Ti (s) (1; _+ $sn ’ :I 

where E, G, k,, and k, are constants, and Mil fli, and Ti the corresponding polynomials. 

8. We shall derive the solution for k = y/30 in the family (2.7). Schwarz had shown 

in [6f that in this case the solution of Equation (3.6) can be expressed algebraically by 

the solution of that equation for k = l/30. Klein f23] had found the form of this depend- 

ence. We denote the Schwarz function for the case of k = 7/30 by s1 , and the Schwarz 

function for k = t/30, as before, by s. The following formula is then valid 

“t :: ($.7 + 7x2) (75” _;_ I)-“ (8.1) 

In order to find the solution of f(c) we shall use Formula (3.8) where we substitute 

s1 for s, We shall again use the parametric representation, but in terms of a, and not of 

st . Weshall find dgldq y= d~lds dsidsl, where dj/ds is defined by (‘7.1), and ds;ttsl by 

(8.1) 

de -=- 
tls 

5.4-“.3-“1&“T~F1-e 

Function f ((1 is defined by the formula 

f = (C,Y’ + 7c,s5 - 7c,s2 $ C,) F-?/o 

together with Equation (7.1). 

Having found the solution, we determine in the usual manner the solution of system 

(4.4) in the hodograph plane for n = 17/r 

7 $7 

C=,C 
- 17Es’r + 118s“J + 187Es’e + 187s’- 119Es5+ 17.~2 + E 

(s’ -j- 7Bs6- 7~2 + E) ‘% 

I! = G?H* (s) (s’ + 7.&S - 7s’ + E) -yy 2 
, V = 3 GV’,, (s) (~7 + 76~5 - 7~2 + I?)-~/? 

The same solution for the case of k = ~/SO can be obtained in another form, if 

Equation (7.8) is used instead of (7. If. 

1. 

2. 

3. 

4. 

5. 
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